电化学反应发电本质上是基于氧化还原反应的电荷转移,气态水变液态水的过程没有什么贡献,因此,氢气发电要用低热值。
根据热力学第二定律:不可能制成一种循环动作的热机,从单一热源取热,使之完全变为功而不引起其它变化(开尔文表述),即不可能把1公斤氢气和氧气燃烧放出来的热量全都用来作功(变成电能)而不引起变化。
这个变化,正是以“熵”为特征的热。因此,任何装置使用化学能(燃料)发电作工,都有一个天然的极限转换效率。
对于燃料电池来说,即可逆热力学发电效率,就是燃料电池能达到的最高理论发电效率。
常温(25℃)下,理论上1kg氢气可以发500mol*241.8/3600kJ=33.58度电;按照目前燃料电池系统额定工况发电的最高额定效率算(60%,已包含可逆热力学效率),实际上1kg氢气可以发500mol*241.8/3600*60%=20.15度电。
电化学反应过程中是存在损耗的,主要来源于反应过程中的极化现象,包含欧姆极化,电化学活化极化和气体扩散极化(浓差极化)。电化学效率是衡量燃料电池电堆技术水平的关键。
燃料参与反应的比例。有的燃料电池可以通过循环泵,把流过电堆但没有参与反应的燃料再次循环利用,所以利用率就会很高,但也会有损失;有的燃料电池把没有参与反应的燃料给烧掉,以热能形式输出,此时燃料利用率就只能算参与反应的比例。
水管理、热管理、气体(氢气、空气)供应、控制-电管理等子系统部件需要消耗一定的能量(电或热)。
比如常见的高温燃料电池——固体氧化物燃料电池(SOFC)和熔融碳酸盐燃料电池(MCFC)——工作温度高达600~1000℃,排出的气体都会有高品位余热,可用于家庭、商业场所、公共单位的热水供应、冷链、生鲜超市、数据中心的高温蒸汽联合制冷机制冷。
热电联供往往是高温燃料电池才有的技能,常见的低温燃料电池,如质子交换膜燃料电池(PEMFC)和碱性燃料电池(AFC),相对来说,回收热能十分有限。