氢能制取、氢能储运、氢能应用三大环节中,储运环节是高效利用氢能的关键,也是影响氢能向大规模方向发展的重要环节。目前主要的氢储运方式分为高压气态储氢、低温液态储氢、固体材料储氢及有机液体储氢四种。国内气态形式储氢的方式占绝大多数,低温液态、固态等其他储氢技术仅有少量应用,总占比不到0.1%。

固态储氢与液态储氢分析

图1:主流储氢技术优缺点对比

固态储氢与液态储氢分析

图2:各类储氢技术指标比较

随着氢能产业的发展,液态储氢和固态储氢相关技术标准也在不断完善。

固态储氢与液态储氢分析

图3:各类储氢技术指标比较

固态储氢

固态储氢是将氢存储在固体材料中,主流方式有物理吸附和化学氢化物储氢两种。优点是储氢压力较低、体积储氢密度高、可纯化氢气;缺点是质量储氢密度低、充放氢需要热交换。

固态储氢与液态储氢分析

图4:固态和液态储氢材料

其中,物理吸附通过活性炭、碳纳米管、碳纳米纤维碳基材料进行物理性质的吸附氢气,以及金属有机框架物(MOFs)、共价有机骨架(COFs)这种具有微孔网格的材料捕捉储存氢气。

固态储氢与液态储氢分析

图5:固态储氢物理吸附原理

化学氢化物储氢则利用金属氢化物储氢。氢气先在其表面催化分解为氢原子,氢原子再扩散进入到材料晶格内部空隙中,以原子状态储存于金属结晶点内,形成金属氢化物,该反应过程可逆,从而实现了氢气的吸、放。主要种类有镁系储氢合金、铁系储氢合金、镧镍稀土系储氢合金、钛系储氢合金、锆系储氢合金等。单位体积的金属可以储存常温常压下近千体积的氢气,体积密度甚至优于液氢。

固态储氢与液态储氢分析

图6:固态化学氢化物材料性能对比

以镁基储氢材料为例,其质量储氢密度为4~7.6wt%,可以在常温常压下进行氢气的存储和运输。与高压气态储氢方式相比,固态储氢具有高储氢密度和高安全的优势,这也降低了对附属设备的要求。下图为典型的固态储氢罐,主要包括固态储氢材料、壳体、气体管道及过滤器、鳍片、金属泡沫、加热管等强化传热介质,预置空余空间等。

固态储氢与液态储氢分析

图7:常见固态储氢罐

镁基储氢材料体系的MgH2与液态水反应生成Mg(OH)2和H2;在高温下与水蒸气反应生成MgO和H2(反应温度高于330℃条件下):

固态储氢与液态储氢分析

MgH2水解反应可以在较为温和的条件下(室温、常压)进行,且理论产氢量是MgH2热解放氢的2倍,为15.2%(wt)。然而,随着水解反应的进行,水解产物Mg(OH)2逐渐包裹在MgH2表面,阻隔了MgH2与水的接触,从而抑制了水解反应的进行。一般可通过改变水解环境、加入催化剂、减小颗粒尺寸等方式来改善MgH2的水解性能。

固态储氢与液态储氢分析

图8:镁储氢材料水解反应罐

典型的MgH2水解制氢燃料电池系统如下图所示:

固态储氢与液态储氢分析

图9:典型的MgH2水解制氢燃料电池系统

该系统通过MgH2水解放出氢气,再将氢气导入氢燃料电池发电,其优点在于能量密度高、安全性高,且产物Mg(OH)2无毒并可回收利用,适用于千瓦量级以下的中小型备用电源、无人机、水下潜航器等。该水解产氢-燃料电池系统开发的主要难点在于水解反应控制和装置集成,其中涉及到实际耗水量大、产氢不稳定、反应难控制等问题。目前已有研究致力于MgH2水解产氢系统的开发与优化,未来的研究关键点依旧会在利用材料优化、精确控制加水速率使氢气平稳可控生成,氢净化系统进一步提升供氢纯度以提高工程适用性。
固态储氢方面,国内已经有公司和研究机构在做试点示范项目:

固态储氢与液态储氢分析

固态储氢与液态储氢分析

(引用自高工氢电)

液态储氢

液态氢(LH2),俗称液氢,是由氢气经由降温而得到的液体。液态氢须要保存在非常低的温度下(大约在-252.8℃)。液态氢的密度大约为70.8千克每立方米,密度很小。它通常被作为火箭发射的燃料,现在亦用作其他交通工具的燃料。液化储氢是将氢气压缩后深冷到-252.8℃以下使之液化成液氢,然后存入特制的绝热真空容器中保存。
液态储氢设备主要用于储存液氢,分为固定式液氢压力容器( 储罐) 和液氢瓶,其优点是体积储氢密度高,液氢的密度为70 kg /m3 ; 缺点是氢气液化能耗高(约为氢气能量的1 /3) 、长时间存放液氢的静态蒸发损失较大。一般液态储氢承压设备的设计压力为0.1~1.3 MPa左右,设计温度为-253 ℃。
液氢制取
液氢的制取,即氢液化技术,具有多种形式,可按照膨胀过程和热交换过程进行大致分类或结合。目前,常用的氢液化工艺流程可以分为利用Joule-Thompson效应(简称“J-T效应”)节流膨胀的简易Linde-Hampson法,以及在此基础上结合透平膨胀机降温的绝热膨胀法。在实际生产过程中根据液氢产量的大小,绝热膨胀法又可划分为利用氦气作为介质膨胀制冷产生低温,进而将高压气态氢冷却至液态的逆布雷顿法,以及让氢气自身绝热膨胀降温的克劳德法。液化流程中主要用到压缩机、换热器、低温透平膨胀机以及节流阀等设备。

固态储氢与液态储氢分析

图10:液氢工厂


固态储氢与液态储氢分析

(从左至右:Linde-Hampson法,逆布雷顿法,克劳德法)

图11:常用的氢液化方法的简易原理图

固态储氢与液态储氢分析

图12:中大型氢气液化装置

固态储氢与液态储氢分析

图13:氢液化系统

液氢储运现状

目前,全球液氢产能达到485t/d。美国(共计18套装置,总产能为326t/d)和加拿大(共计5套装置,总产能81t/d)的液氢产能占据了全球液氢总产能的80%以上。我国具备液氢生产能力的文昌基地、西昌基地和航天101所,均服务于航天火箭发射领域。在民用液氢领域,由101所承建的国内首座民用市场液氢工厂(产能为0.5t/d)和研发的具有自主知识产权基于氦膨胀制冷循环的国产吨级氢液化工厂(产能为2t/d)已分别于2020年4月和2021年9月成功施工,将我国的液氢产能提升至6t/d。但距离发达国家的液氢产能规模,仍有较大差距。
液氢技术在我国发源于航天领域,技术入门要求较高。目前,液氢规模化制、储、运、用技术和经验都集中在航天产业,受众范围相对封闭。氢液化技术成熟的发达国家正通过创新氢液化流程和提高设备工艺及效率的方法,提高氢液化装置的效率和降低能耗。一些采用高性能换热器、膨胀机和新型混合制冷剂的氢液化创新概念流程的能耗最低已至 4.41 kWh /kgLH2。
国内虽然于上个世纪末自主开发了氦膨胀机制冷的小型氢液化装置,但系统能耗、产品质量和制造水平和美国等发达国家比还存在很大的差距。作为液氢供应链的基础保障,突破技术壁垒,掌握独立研发大规模氢液化装置的能力迫在眉睫。国内的大型氢液化装置主要需要突破低温氢工况材料选用,氢、氦透平膨胀机研制和正仲氢转化催化剂等技术难题。
氢、氦透平膨胀机作为氢气液化循环中的核心部件尚无国产化商品,它是系统冷量的主要提供者,其热力性能、力学性能的优劣对装置的经济性和长期运转的可靠性至关重要,是系统中技术含量高、研制难度大的部件。
作为液氢生产大国的美国一直以来对中国都采取“严格禁运,严禁交流”的策略,同时还限制其同盟国的公司,例如法液空、林德等公司向中国出售设备和技术。这些都使得我国获取氢液化设备的成本高昂,在进行价格谈判时处于被动地位。在设备的建造周期、设备可获得性上存在不确定性。同时进口设备还存在维修维护费用高等问题。在技术封锁下,中国尚未具备独立研发大规模氢液化装置的能力,严重限制了我国氢能产业的发展,是目前亟待解决的问题。此外,液氢储运的发展还存在难点:
  1. 液化工厂投资大,能耗相对较高

    国内目前的民用液氢需求量较小,规模化应用程度不足,产能规模上升缓慢,液氢存储氢气总能量的 30%-40% 被用在氢液化上,导致液氢的单位生产能耗比高压气氢更大。
  2. 液氢储运过程中存在蒸发损失
目前,在液氢储运过程中,对漏热导致的蒸发氢气基本采用放空方式处理,这会导致一定程度的蒸发损失( 取决于罐子的尺寸,目前一般为 0.1-1% 每天)。在未来的氢能储运环节中,需要采用额外的措施对此部分蒸发氢气气体进行回收,以解决直接放空导致的使用率下降问题。
液氢技术路线适用于氢能的规模化储存和运输,国内虽具备一定的液氢自主生产能力,能够满足当前氢能源在我国起步发展示范阶段的推广应用需求,但还需对未来液氢的规模化产、储、运技术进行积极研发和探索,液氢工厂的产能规模是决定液氢成本的关键之一。

固态储氢与液态储氢分析



原文始发于微信公众号(氢能科学馆):固态储氢与液态储氢分析

大家好,艾邦氢能源技术网(www.htech360.com)的微信公众号已经开通,主要分享氢燃料电池堆(双极板,质子膜,扩散层,密封胶,催化剂等),储氢罐(碳纤维,环氧树脂,固化剂,缠绕设备,内层塑料及其成型设备,储氢罐,车载供氢系统,阀门),制氢,加氢,氢燃料汽车动力系统等相关的设备,材料,配件,加工工艺的知识。同时分享相关企业信息。欢迎大家识别二维码,并通过公众号二维码加入微信群和通讯录。 艾邦氢能产业链通讯录,目前有2200人加入,如亿华通、清极能源、氢蓝时代、雄韬、氢牛、氢璞、爱德曼、氢晨、喜马拉雅、明天氢能、康明斯、新源动力、巴拉德、现代汽车、神力科技、中船712等等,可以按照标签筛选,请点击下方关键词试试 资料下载:

作者 808, ab